TAKING ACCOUNT OF SLIP AND CONVECTION
IN THE GAS BETWEEN TWO PARALLEL PLATES

V. G. Leitsina UDC 533.601.1

The flow mode of a rarefied gas between two parallel plates with a sinusoidal temperature
distribution on one of the plates is investigated. Slip and free convection are taken into
account,

Let us consider the flow of a weakly rarefied gas between two paraliel plates with a sinusoidal tem-
perature distribution on one of the plates and taking account of slip and free convection,

Let us select X and Y axes, respectively, along and normal to the lower plate surface. Let us con-
sider the amplitude of the temperature change @ and the ratio between the mean free path I and the wave-
length of the temperature change L to be small., Let us seek the temperature distribution T, the density p,
and the pressure p of the gas in the form

T=Ty(1+1), p=p(+0) p=pd+9,
where Ty and g, correspond to ¢ = 0 and py = p; — pgY.

The velocities u and v and the quantities 7, o, and £ are small, The linearized system of equations
describing the free convection is the following [1]:
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In the case of a sinusoidal temperature change on the lower plate (Tyy = @ sinx) the boundary condi-

tions are (we consider exp{—(2rd/L)} to be negligibly small and the perturbation does not reach the upper
plate):

for y = 0 [2]
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Fig. 1. Solid streamlines for a correspond to (17), and for b
to (17"), while the dashes correspond to E = 0 for a and b;
the dash-dot lines correspond to k = 0 for a and k; = 0 for b,
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for y = @rd/L) =h (or for y —«)
u=0, v=0, 1=0, £=0. (9)
Solving () with (9) taken into account, we find
T =aexp{—y}sinx, (10)
where the constant a is determined from condition (8)
a=a(l —o. (11)

Eliminating u and v from (1)-(3), we obtain the equation

AE pogL 08 Pp,gT,L O

B Py —6?= 2np, 5!/—. 12

Using (10), let us solve (1), ), and (12) with conditions (7) and (9):

g=[—@+ﬂ‘—(2k—p—i E)}exp{—y}sinx, (13)
2 Lp, 2
u:[k+(g—k)y—jf—:—yz]exp{—y}cosx, (14
E .
v= (ky-{- —4—y2)exp {—y}sinx, (15)

where

D=— PToap.L E= pogL?pTya ,
dmp Satp

and the coefficient k is determined from condition (6):

k= —1’12@- + bya. (16)
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On the basis of (14) and (15), let us introduce the stream function

P = (ky + % yﬁ) exp {— y} cos x. (17)

Let us transfer the origin of the coordinate system for a sinusoidal change in the temperature on the
upper plate by introducing y; =y ~h, In this case the Eqs, (1)-(5) are retained, conditions (9) are satisfied
for y; = —h and conditions (8)~(8) for y; = 0 (8/8y is replaced by —8/8y, in (6) and (8)).

We obtain the following results:
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Let us examine the relationship between the coefficients k(k() and E (taking account of the known re~
lation i = pl (2RT,/m)!/2:
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(2/1) < 1; the coefficient (24R7%/Bg) for air is 2-10% m, Changing the pressure for given L, or L for con-
stant pressure, different values can be obtained for the ratio between the coefficients k(k;) and E governing
the slip and free convection, For the pressures 1, 0.1, and 0,01 atm, k and E are of the same order as L,
respectively equal to 1073, 1072, and 10! m, hence k =k; =~ bya. It is seen from (16) and (16') that the slip
is determined both by the nonisothermal surface () and by the presence of free convection (E), however,
for (byE/2bya) ~ 1 the relation k « E is satisfied.

Streamlines corresponding to (17) and (17') are presented in a and b of the sketch (Fig.1) for k =k,
= (1/2)E. The flow is characterized by the period 7. A "center" type singularity holds for x; ==, 27, ...,
For (17) yy = 1 — (2k/E) + V(1 + 4k%/E?), and for (17') yqo = =1 — (2k;/E) + V(1 + 4k}/E?), i.e., there exist two
centers and the stream function y; changes sign for y, = —4k;/E. Presented in the same sketch for com-
parison are streamlines corresponding to no slip (k = 0 or k; = 0) and no convection (E = 0, this case has
been examined in [3]).

NOTATION
u, Vv are the longitudinal and transverse velocity components;
A = (3/ad) + (3%/8y);
M is the coefficient of gas viscosity;
B is the coefficient of thermal expansion;
R is the gas constant;
Pi, Dy are the gas pressures at the lower and upper plates, respectively, at the tempera-
ture To;
f is the coefficient of accommodation,
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